

SAFETY DATA SHEET

Section 1: IDENTIFICATION

IDENTITY

Part Number 3R2300

Identity Ceramic Fiber Blanket

Description Refractory ceramic fiber product

SUPPLIERS Industries 3R Inc.

55, Road 116 West, Danville, (Québec) JOA 1A0

819-839-2793

Info@industries3r.com www.industries3r.com

Recommended use of the product: data not available

Section 2: HAZARDS IDENTIFICATION

Classification of the chemical in accordance with paragraph (d) of \$1910.1200:

The U.S. Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (HCS) 2012 indicates that IARC Group 2B corresponds to OSHA HCS 2012 Category 2 carcinogen classification (see, e.g., §1910.1200, Appendix F, Part D).

Signal word, hazard statement(s), symbol(s) and precautionary statement(s) in accordance with paragraph (f) of \$1910.1200: Under OSHA HCS 2012, RCF is classified as GHS category 2 carcinogen

Signal Words: WARNING

Hazard Statements: May cause cancer by inhalation (H350)

Precautionary statements:

P202. Do not handle until all safety instructions have been read and understood.

P281.Use personal protective equipment as required.

If concerned about exposure, get medical advice.

Store in a manner to minimize airborne dust.

Dispose of waste in accordance with local, state and federal regulations.

Other hazards which do not result in classification

May cause temporary mechanical irritation to exposed eyes, skin or respiratory tract. Minimize exposure to airborne dust.

Emergency Overview:

Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure. These effects are usually temporary.

Mixture Rule:

Not applicable

Section 3: COMPOSITION / INFORMATION ON INGREDIENTS

COMPONENTS	CAS NUMBER	% BY WEIGHT
Refractories, Fibers, Aluminosilicate	142844-00-6	40 - 100
Water	7732-18-5	0 - 60

Common Name:

RCF, ceramic fiber, Alumino Silicate Wool (ASW), synthetic vitreous fiber (SVF), man-made vitreous fiber (MMVF), man-made mineral fiber (MMMF), high temperature insulation wool (HTIW)

Impurities and Stabilizing Additives:

Not applicable.

Section 4: FIRST AID MEASURES

Description of First Aid Measures.

Eyes	If eyes become irritated, flush immediately with large amounts of lukewarm water for at least 15 minutes. Eyelids should be held away from the eyeball to ensure thorough rinsing. Do not rub eyes.	
Skin	If skin becomes irritated, remove soiled clothing. Do not rub or scratch exposed skin. Wash area of contact thoroughly with soap and water. Using a skin cream or lotion after washing may be helpful.	
Respiratory Tract	If respiratory tract irritation develops, move the person to a dust free location. See Section 8 for additional measures to reduce or eliminate exposure.	
Gastrointestinal	If gastrointestinal tract irritation develops, move the person to a dust free environment.	

Section 5: FIRE FIGHTING MEASURES

Extinguishing media

Use extinguishing media suitable for type of surrounding fire

Special Protective Equipment and Precautions for Firefighters

NFPA Codes: Flammability: 0 Health: 1 Reactivity: 0 Special: 0

Specific hazards arising from the chemical (e.g., nature of any hazardous combustion products):

None

Section 6 : ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minimize airborne dust. Compressed air or dry sweeping should not be used for cleaning. See Section 8 "Exposure Controls / Personal Protection" for exposure guidelines.

Methods and materials for containment and clean up

Frequently clean the work area with vacuum or wet sweeping to minimize the accumulation of debris. Do not use compressed air for clean-up.

Section 7: HANDLING AND STORAGE

Precautions for safe handling

Handle fiber carefully to minimize airborne dust. Limit use of power tools unless in conjunction with local exhaust ventilation. Use hand tools whenever possible.

Conditions for safe storage

Store in a manner to minimize airborne dust.

Empty containers

Product packaging may contain residue. Do not reuse.

Section 8: EXPOSURE CONTROLS / PERSONAL PROTECTION

OSHA permissible exposure limit (PEL), American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV), and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the safety data sheet, where available.

EXPOSURE GUIDELINES			
MAJOR COMPONENT OSHA PEL ACGIH TLV MANUFACTURER'S RE			
Refractories, Fibers, Aluminosilicate	None Established*	0.2 f/cc, 8-hr. TWA	0.5 f/cc, 8-hr. TWA**

^{*}Except of in the state of California, there is no specific regulatory standard for RCF in the U.S. OSHA's "Particulate Not Otherwise Regulated (PNOR)" standard [29 CFR 1910.1000, Subpart Z, Air Contaminants] applies generally - Total Dust 15 mg/m3; Respirable Fraction 5 mg/m3. The PEL for RCF in California is 0.2 f/cc, 8-hr TWA

** HTIW Coalition has sponsored comprehensive toxicology and epidemiology studies to identify potential RCF-related health effects [see Section 11 for more details], consulted experts familiar with fiber and particle science, conducted a thorough review of the RCF-related scientific literature, and further evaluated the data in a state-of the-art quantitative risk assessment. Based on these efforts and in the absence of an OSHA PEL, HTIW Coalition has adopted a recommended exposure guideline (REG), as measured under NIOSH Method 7400 B. The manufacturers' REG is intended to promote occupational health and safety through feasible exposure controls and reductions as determined by extensive industrial hygiene monitoring efforts undertaken voluntarily and pursuant to an agreement with the U.S. Environmental Protection Agency.

OTHER OCCUPATIONAL EXPOSURE LEVELS (OEL)

RCF-related occupational exposure limits vary internationally. Regulatory OEL examples include: Canada - 0.2 to 1.0 f/cc; Ontario Canada - 0.5 f/cc. United Kingdom - 1.0 f/cc. Non-regulatory OEL examples include: HTIW Coalition REG - 0.5 f/cc. The objectives and criteria underlying each of these OEL decisions also vary. The evaluation of occupational exposure limits and their relative applicability to the workplace is best performed, on a case-by-case basis, by a qualified Industrial Hygienist.

Appropriate Engineering Controls

Use engineering controls such as local exhaust ventilation, point of generation dust collection, down draft work stations, emission controlling tool designs and materials handling equipment designed to minimize airborne fiber emissions.

Individual protection measures, such as personal protective equipment

PPE - Skin

Wear personal protective equipment (e.g gloves), as necessary to prevent skin irritation. Washable or disposable clothing may be used. If possible, do not take unwashed clothing home. If soiled work clothing must be taken home, employees should be informed on best practices to minimize nonwork dust exposure (e.g., vacuum clothes before leaving the work area, wash work clothing separately, and rinse washer before washing other household clothes.

PPE - Eve

As necessary, wear goggles or safety glasses with side shields.

PPE - Respiratory

When engineering and/or administrative controls are insufficient to maintain workplace concentrations below the 0.5 f/cc REG or a regulatory OEL, the use of appropriate respiratory protection, pursuant to the requirements of OSHA Standards 29 CFR 1910.134 and 29 CFR 1926.103, is recommended. A NIOSH certified respirator with a filter efficiency of at least 95% should be used. The 95% filter efficiency recommendation is based on NIOSH respirator selection logic sequence for exposure to manmade mineral fibers. Pursuant to NIOSH recommendations, N-95 respirators are appropriate for exposures up to 10 times the NIOSH Recommended Exposure Limit (REL). With respect to RCF, both the NIOSH REL and the industry REG have been set at 0.5 fibers per cubic centimeter of air (f/cm3). Accordingly, N-95 would provide the necessary protection for exposures up to 5 f/cm3. Further, the Respirator Selection Guide published by 3M Corporation, the primary respirator manufacturer, specifically recommends use of N-95 respirators for RCF exposures. In cases where exposures are known to be above 5.0 f/cm3, 8 hour TWA, a filter efficiency of 100% should be used. Other factors to consider are the NIOSH filter series N, R or P -- (N) Not resistant to oil, (R) Resistant to oil and (P) oil Proof. These recommendations are not designed to limit informed choices, provided that respiratory protection decisions comply with 29 CFR 1910.134.

The evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case by case basis, by a qualified Industrial Hygienist.

Other Information

Concentrations based upon an eight-hour time weighted average (TWA) as determined by air samples collected and analyzed pursuant to NIOSH method 7400 (B) for airborne fibers. The manufacturer recommends the use of a full-facepiece air purifying respirator equipped with an appropriate particulate filter cartridge during furnace tear-out events and the removal of used RCF to control exposures to airborne fiber and the potential presence of crystalline silica.

Section 9: PHYSICAL AND CHEMICAL PROPERTIES

Appearance b -Odor	White, odorless, fibrous material
Odor Threshold	Not applicable
рН	Not applicable
Melting Point	1760°C (3200°F)
Initial Boiling Point/Range	Not applicable
Flashpoint	Not applicable
Evaporation Rate	Not applicable
Flammability	Not applicable
Upper/Lower Flammability or Explosive Limits	Not applicable
VAPOR PRESSURE	Not applicable
VAPOR DENSITY m - Solubility	Not soluble in water
Relative Density	2.50 - 2.75
Partition Coefficient: n-Octanol/ water	Not applicable
Auto-ignition temperature	Not applicable

Decomposition Temperature	Not applicable
Viscosity	Not applicable

Section 10: STABILITY AND REACTIVITY

Chemical Stability:	This is a stable material.
Possibility of Hazardous Reaction:	Not applicable.
Conditions to Avoid:	Please refer to handling and storage advise in Section 7.
Incompatible Materials:	None
Hazardous decomposition products:	None

Section 11: TOXICOLOGICAL INFORMATION

TOXICOKINETICS, METABOLISM AND DISTRIBUTION

Exposure is predominantly by inhalation or ingestion. Man-made vitreous fibers of a similar size to RCF have not been shown to migrate from the lung and/or gut and do not become located in other organs of the body.

Acute Toxicity

Epidemiology

In order to determine possible human health effects following RCF exposure, the University of Cincinnati has been conducting medical surveillance studies on RCF workers in the U.S.A; this epidemiological study has been ongoing for 25 years and medical surveillance of RCF workers continues. The Institute of Occupational Medicine (IOM) has conducted medical surveillance studies on RCF workers in European manufacturing facilities.

Pulmonary morbidity studies among production workers in the U.S.A. and Europe have demonstrated an absence of interstitial fibrosis. In the European study a reduction of lung capacity among smokers has been identified, however, based on the latest results from a longitudinal study of workers in the U.S.A. with over 17-year follow-up, there has been no accelerated rate of loss of lung function (McKay et al. 2011).

A statistically significant correlation between pleural plaques and cumulative RCF exposure was evidenced in the U.S.A. longitudinal study.

The U.S.A. mortality study showed no excess mortality related to all deaths, all cancer, or malignancies or diseases of the respiratory system including mesothelioma (LeMasters et al. 2003).

Toxicology

Acute toxicity: short term inhalation

No data available: Short term tests have been undertaken to determine fiber (bio) solubility rather than toxicity; repeat dose inhalation tests have been undertaken to determine chronic toxicity and carcinogenicity.

• Acute toxicity: oral

No data available: Repeated dose studies have been carried out using gavage. No effect was found.

• Skin corrosion/irritation

Not a chemical irritant according to test method OECD no. 404.

Serious eye damage/irritation

Not possible to obtain acute toxicity information due to the morphology and chemical inertness of the substance.

• Respiratory or skin sensitization

No evidence from human epidemiological studies of any respiratory or skin sensitization potential.

• Germ cell mutagenicity/genotoxicity

Method: In vitro micronucleus test

Species: Hamster (CHO)
Dose: 1-35 mg/ml

Routes of administration: In suspension

Results: Negative
• Carcinogenicity

Method: Inhalation, multi-dose

Species: Rat

Dose: 3 mg/m3, 9 mg/m3 and 16 mg/m3 Routes of administration: Nose only inhalation

Results: Fibrosis just reached significant levels at 16 and 9 mg/m3 but not at 3 mg/m3. None of the parenchymal tumor incidences were higher than the historical control values for this strain of animal.

Method: Inhalation, single dose

Species: Rat Dose: 30 mg/m3

Routes of administration: Nose only inhalation

Results: Rats were exposed to a single concentration of 200 WHO fibers/ml specially prepared RCF for 24 months. High incidence of exposure-related pulmonary neoplasms (bronchoalveolar adenomas and carcinomas) was observed. A small number of mesotheliomas were observed in each of the fiber exposure groups (Mast et al 1995a).

Method: Inhalation, single dose

Species: Hamster Dose: 30 mg/m3

Routes of administration: Nose only inhalation

Results: Hamsters were exposed to a single concentration of 260 WHO fibers/ml specially prepared RCF for 18 months and developed lung fibrosis, a significant number of pleural mesotheliomas (42/102) but no primary lung tumors (McConnell et al 1995).

Method: Inhalation, single dose

Species: Rat

Dose: RCF1: 130 F/ml and 50 mg/m3 (25% of non fibrous particles) RCF1a: 125 F/ml and 26 mg/m3 (2% of non fibrous particles)

Routes of administration: Nose only inhalation

Results: Rats were exposed to RCF1 and RCF1a for 3 weeks. The objective of the study was to compare lung retention and biological effects of the original RCF1 compared to RCF1a. The main difference of these 2 samples was the non-fibrous particle content of respectively 25% versus 2%. The post treatment observation was 12 months. Alveolar clearance was barely retarded after RCF1A exposure. After RCF1 exposure, however, a severe retardation of clearance was observed. (Bellmann et al 2001).

After intraperitoneal injection of ceramic fibers into rats in three experiments (Smith et al 1987, Pott et al 1987, Davis et al 1984), mesotheliomas were found in the abdominal cavity in two studies, while the third report (Pott et al 1987) had incomplete histopathology. Only a few mesotheliomas were found in the abdominal cavity of hamsters after intraperitoneal injection in one experiment (Smith et al 1987).

However, the ceramic fibers tested were of relatively large diameter. When rats and hamsters were exposed via intraperitoneal injection, tumor incidence was related to fiber length and dose (Smith et al 1987, Pott et al 1987, Miller et al 1999, Pott et al 1989). (From SCOEL publication (EU Scientific Committee on Occupational Exposure Limits) SCOEL/SUM/165, September 2011).

Reproductive toxicity

Method: Gavage Species: Rat

Dose: 250mg/kg/day

Routes of administration: Oral

Results: No effects were seen in an OECD 421 screening study. There are no reports of any reproductive toxic effects of mineral fibers. Exposure to these fibers is via inhalation and effects seen are in the lung. Clearance of fibers is via the gut and the feces, so exposure of the reproductive organs is extremely unlikely.

• STOT-Single exposure

Notapplicable

STOT-Repeated exposure

Not applicable

Aspiration hazard

Not applicable

See the following review publications for a summary and discussion:

Interpretation of these animal experiments is complex and there is not complete agreement among scientists internationally. A summary of the evidence relating to RCF carcinogenicity in vivo can be found in SCOEL/SUM/165 and in Utell and Maxim 2010.

Other information

Numerousstudies indicate the relevance of biopersistence as a determinant of toxic effects of fiber exposure. (Maxim et al 2006).

Irritant Properties

Negative results have been obtained in animal studies (EU method B 4) for skin irritation. Inhalation exposures using the nose only route produce simultaneous heavy exposures to the eyes, but no reports of excess eye irritation exist. Animals exposed by inhalation similarly show no evidence of respiratory tract irritation.

Human data confirm that only mechanical irritation, resulting in itching, occurs in humans. Screening at manufacturers' plants in the UK has failed to show any human cases of skin conditions related to fiber exposure.

International Agency for Research on Cancer and National Toxicology Program

IARC, in 1988, Monograph v.43 (and later reaffirmed in 2002, v.81), classified RCF as possibly carcinogenic to humans (group 2B). IARC evaluated the possible health effects of RCF as follows:

There is inadequate evidence in humans for the carcinogenicity of RCF. There is sufficient evidence in experimental animals for the carcinogenicity of RCF. The Annual Report on Carcinogens (latest edition), prepared by NTP, classified respirable RCF as "reasonably anticipated" to be a carcinogen). Not classified by OSHA.

Section 12: ECOLOGICAL INFORMATION

Ecotoxicity (aquatic and terrestrial, where available)	These products are not reported to have any ecotoxicity effects.
Bioaccumulative potential	No bioaccumulative potential.
Mobility in soil	No mobility in soil.
Other adverse effects (such as hazardous to the ozone layer	No adverse effects of this material on the environment are anticipated.

Section 13: DISPOSAL CONSIDERATIONS

Waste Management and Disposal

To prevent waste materials from becoming airborne during waste storage, transportation and disposal, a covered container or plastic bagging is recommended.

Additional information

This product, as manufactured, is not classified as a listed or characteristic hazardous waste according to U. S. Federal regulations (40 CFR 261). Any processing, use, alteration or chemical additions to the product, as purchased, may alter the disposal requirements. Under U. S. Federal regulations, it is the waste generator's responsibility to properly characterize a waste material, to determine if it is a "hazardous" waste. Check local, regional, state or provincial regulations to identify all applicable disposal requirements.

Section 14: TRANSPORT INFORMATION

UN number.

Hazard Class: Not Regulated United Nations (UN) Number: Not Applicable Labels: Not Applicable North America (NA) Number: Not Applicable

Placards: Not Applicable Bill of Lading: Product Name

UN proper shipping name Not applicable.

Transport hazard class(es) Not applicable.

Packing group, if applicable Not applicable.

Environmental hazards (e.g., Marine pollutant (Yes/No))

Transport in bulk (according to Annex II of MARPOL 73/78 and the IBC Code) Not regulated.

Special precautions which a user needs to be aware of, or needs to comply with, in connection with transport or conveyance either within or outside their premises Not applicable.

International

Canadian TDG Hazard Class & PIN: Not regulated

Not classified as dangerous goods under ADR (road), RID (train), IATA (air) or IMDG (ship).

Section 15: REGULATORY INFORMATION

UNITED STATES REGULATIONS

EPA: Superfund Amendments and Reauthorization Act (SARA)Title III - This product does not contain any substances reportable under Sections 302, 304, 313, (40 CFR 372). Sections 311 and 312 (40 CFR 370) apply (delayed hazard).

Toxic Substances Control Act (TSCA)- RCF has been assigned a CAS number; however, it is not required to be listed on the TSCA inventory.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Clean Air Act (CAA) - RCF contains fibers with an average diameter greater than one micron and thus is not considered a hazardous air pollutant.

OSHA: Comply with Hazard Communication Standards 29 CFR 1910.1200 and 29 CFR 1926.59 and the Respiratory Protection Standards 29 CFR 1910.134 and 29 CFR 1926.103. California: Ceramic fibers (airborne particles of respirable size) is listed in Proposition 65, The Safe Drinking Water and Toxic Enforcement Act of 1986 as a chemical known to the State of California to cause cancer.

Other States: RCF products are not known to be regulated by states other than California; however, state and local OSHA and EPA regulations may apply to these products. If in doubt, contact your local regulatory agency.

INTERNATIONAL REGULATIONS

Canada:

Canadian Workplace Hazardous Materials Information System (WHMIS) - RCF is classified as Class D2A - Materials Causing Other Toxic Effects

Canadian Environmental Protection Act (CEPA)- All substances in this product are listed, as required, on the Domestic Substances List (DSL)

European Union:

European Directive 97/69/EC classified RCF as a Category 2 carcinogen; that is it "should be regarded as if it is carcinogenic to man."

REACH Regulation:

RCF is classified under the CLP (classification, labelling and packaging of substances and mixtures) regulation as a category 1B carcinogen. On January 13, 2010 the European Chemicals Agency (ECHA) updated the candidate list for authorization (Annex XV of the REACH regulation) and added 14 new substances in this list including aluminosilicate refractory ceramic fibers.

As a consequence, EU (European Union) or EEA (European Economic Area) suppliers of articles which contain aluminosilicate refractory ceramic fibers in a concentration above 0.1% (w/w) have to provide sufficient information, available to them, to their customers or upon requests to a consumer within 45 days of the receipt of the request. This information must ensure safe use of the article, and as minimum contains the name of the substance.

Section 16: OTHER INFORMATION

Devitrification

As produced, all RCF fibers are vitreous (glassy) materials which do not contain crystalline silica. Continued exposure to elevated temperatures over time may cause these fibers to devitrify (become crystalline). The first crystalline formation (mullite) begins to occur at approximately 985° C (1805° F). Crystalline phase silica may begin to form at approximately 1100° C (2012° F). When the glass RCF fibers devitrify, they form a mixed mineral crystalline silica containing dust. The crystalline silica is trapped in grain boundaries within a matrix predominately consisting of mullite. The occurrence and extent of crystalline phase formation is dependent on the duration and temperature of exposure, fiber chemistry and/or the presence of fluxing agents or furnace contaminants. The presence of crystalline phases can be confirmed only through laboratory analysis of the "hot face" fiber.

IARC's evaluation of crystalline silica states "Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)" and additionally notes "carcinogenicity in humans was not detected in all industrial circumstances studied." IARC also studied mixed mineral crystalline silica containing dusts such as coal dusts (containing 5-15 % crystalline silica) and diatomaceous earth without seeing any evidence of disease. (IARC Monograph Vol. 68, 1997). NTP lists all polymorphs of crystalline silica as substances which may "reasonably be anticipated to be carcinogens".

IARC and NTP did not evaluate after-service RCF, which may contain various crystalline phases. However, an analysis of after-service RCF samples obtained pursuant to an exposure monitoring agreement with the EPA, found that in the furnace conditions sampled, most did not contain detectable levels of crystalline silica. Other relevant RCF studies found that (1) simulated after-service RCF showed little, or no, activity where exposure was by inhalation or by intraperitoneal injection; and (2) after-service RCF was not cytotoxic to macrophage-like cells at concentrations up to 320 micrograms/cm² - by comparison, pure quartz or cristobalite were significantly active at much lower levels (circa 20 micrograms/cm²).

HMIS HAZARD RATING
HMIS Health 1* (* denotes potential for chronic effects)
HMIS Flammable 0
HMIS Reactivity 0
HMIS Personal Protective Equipment X (To be determined by user)

DISCLAIMER - The information provided in this Safety Data Sheet is based on the data furnished by our suppliers. While the information and recommendations set forth herein are believed to be accurate, Industries 3R takes no warranty with respect thereto and disclaims all liability in reliance thereon. We recommend testing according to local conditions. The specifications are subject to change without notice.

Last Update: 2025-06-06

FICHE DE DONNÉES DE SÉCURITÉ

Section 1: IDENTIFICATION

IDENTITÉ

Numéro de pièce: 3R2300

Identité: Tissu de fibres de céramique

Description: Produit à base de fibres de céramiques réfractaires

FOURNISSEUR Industries 3R Inc.

55, Route 116 Ouest, Danville, (Québec) JOA 1A0

819-839-2793

Info@industries3r.com www.industries3r.com

Utilisation recommandée du produit: données non disponibles

Section 2: IDENTIFICATION DES DANGERS

Classification des produits chimiques conformément au paragraphe (d) de la norme §1910.1200 La Norme de communication des dangers (HCS) de l'Occupational Safety et Health Administration (OSHA) des États-Unis datée de 2012 indique que le groupe 2B du CIRC correspond à la classification de la norme HCS 2012 de l'OSHA des cancérogènes de catégorie 2 (voir, par exemple, la section 1910.1200, annexe F, partie D).

Terme d'avertissement, déclaration(s) de danger, symbole(s) et mise(s) en garde conformément au paragraphe (f) de la norme §1910.1200: En vertu de la norme HCS 2012 de l'OSHA, les FCR sont classifiés en tant que cancérogène de catégorie 2 du SGH.

Mots indicateurs

Avertissement

Mentions de danger

Susceptible de provoguer le cancer par inhalation.

Mises en garde

Ne pas manipuler avant d'avoir lu et compris toutes les précautions de sécurité.

Utiliser une protection respiratoire requise; voir la section 8 de la fiche de données de sécurité.

En cas d'inquiétudes relatives à une exposition, consulter un médecin.

Stocker de manière à réduire au minimum les poussières en suspension.

Éliminer les déchets conformément aux réglementations locales, nationales et fédérales.

Renseignements complémentaires

Peut provoquer une irritation mécanique temporaire des yeux, de la peau ou des vois respiratoires exposés. Réduire l'exposition aux poussières en suspension.

En cas d'urgence Effets chroniques

Aucune incidence d'excès de d'affections pulmonaires n'a été observée dans les études sur les salariés exposés. Chez l'animal les études en laboratoire long terme à des doses plusieurs centaines de fois supérieures aux expositions professionnelles habituelles ont identifiés la présence de fibrose, de cancer du poumon et des mésothéliomes chez le rat et le hamster. Les fibres utilisées dans ces études ont été dimensionnées afin de maximiser leur respirabilité chez les rongeurs.

Règle relative au mélange

Sans objet.

Section 3 : COMPOSITION / INFORMATION SUR LES INGRÉDIENTS

COMPOSANTS	NUMÉRO CAS	% EN POIDS
Fibres céramiques réfractaires, silicate d'aluminium	142844-00-6	40 - 100
Eau	7732-18-5	0 - 60

FCR, fibres céramiques, laine d'aluminosilicate de (ASW), fibres vitreuses synthétiques (FVS), fibres vitreuses artificielles (FVA), fibres minérales artificielles (FMA), laine d'isolation haute température (LIHT).

Impuretés et additifs stabilisants

Sans objet.

Section 4: PREMIERS SOINS

Peau	Si la peau est irritée, enlever les vêtements contaminés. Ne pas frotter ou gratter la peau. Laver les zones en contact abondamment à l'eau et au savon. Après lavage une crème ou une lotion pour la peau peut être utile.	
Yeux	Si les yeux sont irrités, rincer abondamment immédiatement avec de l'eau à	
Teux	température durant au moins 15 minutes. Les paupières doivent être maintenues écartées des yeux afin d'assurer un rinçage efficace. Ne pas frotter les yeux.	
Voies respiratoires	En cas d'inflammation des voies respiratoires déplacer la personne dans une zor sans poussière. Pour plus d'informations sur les moyens de réduire ou élimine l'exposition reférez vous à la section 8.	
Voies gastro- intestinales	En cas d'irritation gastrointestinale déplacer la personne dans une zone sans poussière.	

Section 5 : MESURES À PRENDRE EN CAS D'INCENDIE

Moyens d'extinction

Utiliser un agent extincteur adapté aux matériaux avoisinants.

Codes NFPA

Inflammabilité: 0 Santé: 1 Réactivité: 0 Spécial: 0

Dangers NFPA inhabituels

Aucun

Section 6 : MESURES À PRENDRE EN CAS DE DÉVERSEMENT ACCIDENTEL

Précautions individuelles, équipement de protection et procédures d'urgence

Réduire au minimum la poussière en suspension dans l'air. Ne pas utiliser d'air comprimé ni de balai à sec pour le nettoyage. Voir la section 8 « Contrôles de l'exposition / Protection individuelle » pour les directives d'exposition.

Méthodes et matériaux pour le confinement et le nettoyage

Nettoyer fréquemment la zone de travail à l'aide d'un aspirateur ou d'un balai humide afin de réduire au minimum l'accumulation de débris. Ne pas utiliser d'air comprimé pour le nettoyage.

Section 7: MANUTENTION ET ENTREPOSAGE

Manipulation

Manipuler les fibres céramiques avec précaution. Limiter l'utilisation d'outils mécanisés s'ils ne sont reliés à un système d'aspiration. Utiliser des outils à main quand c'est possible. Nettoyer la zone de travail fréquemment à l'aide d'un aspirateur équipé d'un filtre HEPA ou balayer après avoir humidifié afin de limiter l'accumulation de débris. Ne pas utiliser d'air comprimé pour le nettoyage.

Conteneurs vides

Stocker dans le conteneur d'origine dans un endroit sec. Garder le conteneur fermé lorsque le produit n'est pas utilisé.

Entreposage

L'emballage du produit peut contenir des résidus. Ne pas réutiliser.

Section 8 : CONTRÔLES DE L'EXPOSITION / PROTECTION INDIVIDUELLE

Limite d'exposition admissible (PEL) de l'OSHA, valeur limite d'exposition (TLV) de l'American Conference of Governmental Industrial Hygienists (ACGIH) et toute autre limite d'exposition utilisée ou recommandée par le fabricant, l'importateur ou l'employeur du produit chimique qui prépare la fiche de données de sécurité, le cas échéant.

VALEURS LIMITES D'EXPOSITION (VLE)				
COMPOSANT PEL OSHA PRINCIPAL		TLV de l'ACGIH	VLE RECOMMANDEE PAR LE FABRICANT	
Réfractaire, silicate d'alum	fibre, inium	Non établi	0.2 f/cc, Moyenne	0.5 f/cc, Moyenne

^{*}A l'exception de l'état de Californie, il n'existe pas de valeur limite réglementaire pour les FCR aux USA. La valeur limite de l'OSHA « Particules non régulées ailleurs » (PNOR) [29 CFR 1910.1000, Subpart Z, Air Contaminants] s'applique généralement : Poussière totale 15 mg/m3; fraction alvéolaire : 5 mg/m3. Le PEL en Californie pour les FCR est de 0.2 f/cc moyenne pondérée sur 8 hr.

**La Refractory Ceramic Fiber Coalition (RCFC) a financé des études épidémiologiques et toxicologiques étendues afin d'identifier les effets qui pourraient résulter de l'exposition aux FCR. [Voir la section 11 pour plus de détails]. RCFC a consulté les experts spécialisés dans les données scientifiques touchant aux fibres et aux particules, a procédé à une recherche approfondie de publications scientifiques en rapport avec les FCR. De plus RCFC a étudié les données disponibles afin d'effectuer une évaluation des risques dans les règles de l'art. Sur la base des ses efforts, et en absence de valeur limite OSHA, RCFC a adopté une valeur limite recommandée (REG) basée sur la méthode de mesure du NIOSH 7400B. LE REG proposé par l'industrie de production a pour objectif de promouvoir des règles d'hygiène et de sécurité par l'intermédiaire de valeurs limites et de méthodes de réduction de l'exposition faisables telles qu'identifiées par un programme de mesures étendu sur la base du volontariat et suite à un accord avec l'agence américaine pour la protection de l'environnement.

AUTRES VALEURS LIMITES D'EXPOSITON PROFESSIONNELLES (OEL)

Les valeurs limites pour les FCR varient internationalement. Quelques exemples de valeurs limites réglementaires : Canada : 0.2 à 1.0 f/cc ; Royaume Uni : 1 f /cc/ Valeurs limites non réglementaires : Valeur limite recommandée par les RCFC : 0.5 f/cc. Les objectifs et les critères formant la base de ces valeurs limites varient également d'un cas à l'autre. Il est préférable d'effectuer l'évaluation de la conformité aux valeurs limites et leur applicabilité relative au cas par cas par un hygiéniste du travail qualifié.

Mesures techniques

Utiliser des mesures de contrôle techniques telles que des systèmes d'aspiration aux poste de travail au plus près des points d'émission, tables aspirantes par le dessous, outils avec système de contrôle des expositions, équipements de manipulation adaptés permettant de limiter les émissions de poussières fibreuses.

Mesures de protection individuelle, telles qu'un équipement de protection individuelle FPI - Peau

Utiliser des gants (en coton par exemple) une protection de la tête ainsi qu'une combinaison couvrant l'ensemble du corps suivant nécessité afin de prévenir de toute irritation cutanée. Des vêtements de protection lavables ou jetables peuvent être utilisés. Si possible ne pas emmener des vêtements non lavés à la maison. Si des vêtements sales doivent être emmenés à la maison l'employeur devra s'assurer que les employés soient bien formés aux meilleures pratiques afin de limiter les expositions non-professionnelles (Ex: aspirer les vêtements avant de quitter son travail, laver les habits de travail séparément, rincer la machine à laver avant d'y introduire d'autres vêtements, etc.)

EPI - Yeux

Porter des lunette de protection avec des écrans latéraux ou toute autre forme de protection des yeux conformes aux standards de l'OSHA afin de prévenir toute irritation des yeux. L'utilisation de lentilles de contact n'est pas recommandée si elles ne sont pas utilisées en combinaison avec un autre protection osculaire appropriée. Ne pas toucher les yeux avec des mains ou des matériaux contaminés. Si possible mettre à disposition un rince œil à proximité.

EPI - Voies respiratoires

Quand les mesures techniques et organisationnelles sont insuffisantes pour maintenir l'exposition en-dessous de 0.5 F/cc REG, l'utilisation de protections respiratoires conforment au standard de l'OSHA 29 CFR1910.134 et 29 CFR1926.103 est recommandée. L'information suivante est donnée est un exemple permettant d'assurer une protection respiratoire appropriée lors de l'exposition aux fibres de silicate d'aluminium. Il est préférable d'effectué l'évaluation des dangers au poste de travail et l'identification des moyens de protections respiratoires adaptées au cas par cas par un hygiéniste du travail qualifié.

Section 9 : PROPRIÉTÉS PHYSIQUES ET CHIMIQUES

Odeur et apparence Odeur	Blanc, sans odeur, matériel fibreux
Seuil de l'odeur	Non applicable
рН	Non applicable
Point de fusion	1760°C (3200°F)
Point d'ébullition	Non applicable
Point d'inflammabilité	Non applicable
Taux d'évaporation	Non applicable
Inflammabilité	Non applicable
Limites supérieures/inférieures d'inflammabilité	
ou limites d'explosivité	Non applicable
Pression de vapeur	Non applicable
Densité de vapeur (Air=1)	Non applicable
Solubilité dans l'eau	Non soluble dans l'eau

(%)Gravité spécifique	2.50 - 2.75
Coefficient de partage : n-Octanol/eau	Non applicable
Température d'auto-inflammabilité	Non applicable
Température de décomposition	Non applicable
Viscosité	Non applicable

Section 10 : STABILITÉ AND REACTIVITÉ

Stabilité chimique :	Il s'agit d'un matériau stable.
Possibilité de réaction dangereuse :	Sans objet.
Conditions à éviter :	Veuillez-vous reporter aux conseils de manipulation et de stockage de la section 7.
Matériaux incompatibles :	Aucun
Produits de décomposition dangereux :	Aucun

Section 11 : DONNÉES TOXICOLOGIQUES

RESUMÉ DES DONNÉES SUR LA SANTÉ:

Les études épidémiologiques incluant la plupart des salariés ayant travaillé dans l'industrie américaine de la production de FCR et ayant été exposés professionnellement n'ont pas montrés d'affection du système respiratoire ou d'autres effets significatifs sur la santé. Dans les études sur l'animal long terme forte dose, l'exposition a résulté en un développement de pathologies chez le rat et le hamster.

Toxicité aigue

Épidémiologie

Une étude épidémiologique réalisée par l'université de Cincinnati est en cours. L'analyse des données disponibles sur les employés des usines de fabrication des RCF aux USA ont donné les résultats suivants:

- 1) L'analyse des radiographies pulmonaires n'a pas montré de signe de fibrose pulmonaire (fibrose interstitielle).
- 2) Il n'y a pas d'évidence d'un accroissement de l'incidence des pathologies pulmonaires parmi les employés de l'industrie manufacturière.
- 3) Dans les premières évaluations un accroissement "apparent" entre la durée d'exposition et certaines mesures des capacités pulmonaires dans la cohorte avaient été observé. Ces observations n'étaient pas cliniquement significatives. Si de telles observations avaient été faites sur un individu isolé le résultat aurait été interprété comme étant compris dans la fourchette normale (prédictible) des observations. Une étude longitudinale plus récente sur des employés ayant subit 5 tests d'explorations fonctionnelles pulmonaires contredit les observations antérieures ne trouvant aucun effet associé à la production de FCR. Les données initiales (en 1987 à peu prêt) semblaient montrer une action interactive entre le tabagisme et l'exposition aux FCR. Des données plus récentes toutefois n'ont pas retrouvé ces actions interactives. Néanmoins, afin de promouvoir une vie saine, les employé de l'industrie de FCR sont encouragés à ne pas de fumer.
- 4) Des plaques pleurales (épaississement le long de la paroi du thorax) ont été observées chez un petit nombre d'employés exposés aux FCR.

Certaines études semblent montrer une association entre la fréquence des plaques pleurales et les observations suivantes faites sur les radiographies pulmonaires:

- (a): Années depuis l'embauche;
- (b): Durée d'emploi en production de FCR;
- (c): Exposition cumulée aux FCR. Les meilleures données indiquent aujourd'hui que les plaques pleurales ne sont que des marqueurs d'exposition.

Les plaques pleurales ne sont pas associées à d'autres affections pulmonaires. La pathologie des plaques pleurales ne restent que comprise partiellement; toutefois le mécanisme résulte d'une réponse inflammatoire résultant de la présence des fibres inhalées.

Toxicologie

Un certain nombre d'études toxicologiques ont été conduites afin d'identifier les effets sur la santé pouvant résultant de l'exposition aux FCR. Dans une étude, effectuée au laboratoire Research and Consulting Company (Genève, Suisse) des rats et des hamsters ont été exposés à une concentration de 30mg/m3 (approximativement 200 F/ml) à des fibres de FCR spécialement préparées durant 6 heures par jour et 5 jours par semaine et durant 24 mois. Chez le rat, une augmentation statistiquement significative du nombre de tumeurs pulmonaires a été observée. 2 mésothéliomes (un cancer de la plèvre, paroi située entre la cage thoracique et le poumon) ont été identifiés. Les hamsters n'ont pas développé de tumeur mais une fibrose interstitielle et des mésothéliomes ont été mis en évidence. Certains experts de la communauté scientifique concluaient au vue des ces résultats que la dose maximum tolérée avait été dépassée et qu'une quantité significative de particules avait été identifiée pouvant jouer un rôle important en tant que facteur confondant. C'est pourquoi ces conclusions peuvent ne pas représenter une évaluation exacte du potentiel des FCR à développer des affections sur la santé.

Une étude multidose complémentaire avec un protocole similaire a été lancée sur d'autres rats exposés à des concentrations de 16mg/m3, 9 mg/m3, et 3 mg/m3 correspondant à approximativement 115, 75, et 25 fibres/ml respectivement. Cette étude n'a pas mis en évidence d'augmentation statistiquement significative des cancers pulmonaires. Des cas de fibrose pleurale et parenchymateuse ont été notés dans le groupe de rats exposés à 16 mg/m3. Quelques cas de fibrose légère et un mésothéliome ont été observés à 9 mg/m3. Aucun effet aigu n'a été observé dans le groupe exposé à 3 mg/m3 suggérant qu'un seuil dose/réponse existe en-dessous duquel il n'existe pas d'effet pulmonaire irréversible.

D'autres études toxicologiques ont été conduites utilisant des méthodes d'exposition non physiologiques telle que des implantations ou injections intrapleurales, intrapéritonéales ou intratrachéales. Certaines de ces études ont montré un effet cancérigène potentiel des FCR. Certains experts suggèrent que ces tests sont peut relevant car ils contournent un certain nombre de mécanismes biologiques qui évitent la déposition des fibres ou qui facilitent leur clairance.

Centre International de Recherche sur le Cancer et National Toxicology Program

En 1988, la version 43 de la monographie du CIRC (et plus tard réaffirmée en 2002 par la version 81) a classé les FCR comme cancérogènes possibles pour l'homme (groupe 2B). Le CIRC a évalué les effets possibles sur la santé des FCR comme suit :

Les données probantes sont insuffisantes chez l'homme concernant la cancérogénicité des FCR. Les données probantes relatives à la cancérogénicité des FCR issues de l'expérimentation animale sont suffisantes. L'Annual Report on Carcinogens (dernière édition) préparé par le National Toxicology Program (NTP), a considéré les FCR respirables comme des substances dont il était « raisonnable de s'attendre » à ce qu'elles soient cancérogènes. Non classés par l'OSHA.

Section 12 : DONNÉES ÉCOLOGIQUES

Écotoxicité (aquatique et terrestre, lorsque disponible)	Ces produits ne présentent aucun effet écotoxique connu.
Potentiel de bioaccumulation	Aucun potentiel de bioaccumulation.
Mobilité dans le sol	Aucune mobilité dans le sol.
Autres effets néfastes (tels que la dangerosité pour la couche d'ozone)	Aucun effet néfaste de ce produit sur l'environnement n'est à prévoir.

Section 13: DONNÉES SUR L'ÉLIMINATION

Gestion des déchets

Afin d'éviter de générer de la poussière durant le stockage, le transport et l'élimination il est recommandé d'utiliser un contenaire fermé ou un emballage plastique.

Information complémentaire

Tel qu'il est actuellement fabriqué, ce produit n'est pas considéré comme un déchet dangereux répertorié ou caractéristique en vertu de la réglementation fédérale américaine (40 CFR 261). Tout traitement, toute utilisation ou modification, ou tout ajout de produits chimiques au produit tel qu'acheté peut modifier les obligations en matière d'élimination. En vertu de la réglementation fédérale américaine, il est de la responsabilité du producteur de déchets de caractériser le matériau de manière adéquate, afin de déterminer s'il s'agit d'un déchet « dangereux ». Consulter la réglementation locale, régionale, nationale ou provinciale en vigueur afin d'identifier l'ensemble des exigences requises en matière d'élimination.

Section 14: INFORMATIONS RELATIVES AU TRANSPORT

Class de danger: Non réglementé Numéro des Nations Unis: Non applicable Etiquetge: Non applicable Numéro Amérique du Nord (NA): Non applicable

Affichage: Non applicable Billet de chargement: Nom du produit

Désignation officielle de transport de l'ONU Sans objet

Classe(s) de danger pour le transport Sans objet.

Groupe d'emballage, le cas échéant Sans objet.

Risques environnementaux (par exemple, Polluant marin [Oui/Non]) Non

Transport en vrac (en vertu de l'Annexe II de la convention MARPOL 73/78 et du Code IBC) Non réglementé.

Précautions spéciales dont l'utilisateur doit être informé ou qu'il doit respecter en ce qui concerne le transport ou le déplacement à l'intérieur ou à l'extérieur de ses installations Sans objet

INTERNATIONAL

Class de danger TDG Canada: Non réglementé

Non classé comme une marchandise dangereuse suivant l'ADR (Route), RID (Train), IATA (air) ou IMDG (bateau)

Section 15: INFORMATIONS SUR LA RÉGLEMENTATION

REGLEMENTATIONS DES ETATS UNIS

EPA :SARA (Superfund Amendments and Reauthorization Act)Titre III - Ce produit ne contient pas de substance déclarable conformément aux sections 302, 304, 313 (40CFR 372). Les sections 311 et 312 (40 CFR 370) s'appliquent (Danger retardé).

TSCA (Toxic Substances Control Act)- LES FCR ont un numéro CAS. Toutefois il n'est pas nécessaire de le lister dans l'inventaire TOSCA.

CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) et CAA(Clean Air Act)-Les FCR contiennent des fibres dont le de diamètre moyen est supérieur à un micron et ne sont donc pas considérées comme des polluants atmosphériques dangereux. OSHA: Se conformer aux règles de communication de dangers 29 CFR 1910, 1200 et 29 CFR 1926.59 et les règles de d'utilisation de protections respiratoires 29 CFR 1910.134 et 29 CFR 1926.103.

Californie: Les fibres céramiques réfractaires (poussières alvéolaires en suspension dans l'air) sont listées dans la proposition 65, dans la réglementation Safe Drinking Water and Toxic Enforcement Act de 1986 comme un produit chimique connu en Californie pour causer le cancer.

Autres Etats: A notre connaissance les FCR ne sont pas réglementées dans les états autres que la Californie. Toutefois les réglementations d'état ou de l'OSHA ou de l'EPA locales peuvent s'appliquer. Contactez votre agence de réglementation locale.

REGLEMENTATIONS INTERNATIONALES

Canada:

Système d'information sur les matières dangereuses utilisées au travail (SIMDUT) - Les FCR sont classées D-2A -Matériaux causant d'autres effets toxiques.

APE Canada : Toutes les substances de ce produit sont listées dans la liste intérieure des substances (LIS) si nécessaire.

Union européenne:

La directive européenne 97/69/CE classe le RCF comme cancérigène de catégorie 2, ce qui signifie qu'il « doit être considéré

comme cancérigène pour l'homme ».

Règlement REACH:

Les fibres céramiques réfractaires sont classées comme cancérigènes de catégorie 1B dans le règlement CLP (classification, étiquetage et emballage des substances et des mélanges). Le 13 janvier 2010, l'Agence européenne des produits chimiques (ECHA) a mis à jour la liste des substances candidates à l'autorisation (annexe XV du règlement REACH) et y a ajouté 14 nouvelles substances, dont les fibres céramiques réfractaires à base d'aluminosilicate.

En conséquence, les fournisseurs de l'UE (Union européenne) ou de l'EEE (Espace économique européen) d'articles contenant des fibres céramiques réfractaires d'aluminosilicate à une concentration supérieure à 0,1 % (p/p) doivent fournir des informations suffisantes, dont ils disposent, à leurs clients ou, sur demande, à un consommateur dans les 45 jours suivant la réception de la demande. Ces informations doivent garantir une utilisation sûre de l'article et contenir au minimum le nom de la substance.

Section 16: AUTRES INFORMATIONS

Dévitirification

Tel que produit toutes les FCR sont des matériaux vitreux (amorphes) ne contenant pas de silice cristalline. Une exposition continue à des températures élevées peut résulter en une dévitrification des fibres (elles deviennent cristallines). La première formation cristalline (mullite) apparait à environ 985° ree; C (1805° ree; F). La silice cristalline peut commencer à se former à environ 1200° ree; C (2192° ree; F). La présence et l'étendue de cristallisation dépend de la durée et de la température d'exposition, de la composition chimique de la fibre et/ou la présence d'agents fondants. La présence de phases cristallines ne peut être confirmée que par des analyses en laboratoire des fibres prélevées sur la "face chaude". L'évaluation par l'IARC de la silice cristalline indique que "la silice cristalline inhalée sous la forme de quartz ou de cristobalite de source professionnelle est cancérigène chez l'homme (Groupe 1)" et note "qu'en faisant cette évaluation générale, le groupe de travail notait que la cancérogénicité chez l'homme n'était pas détectée dans toutes les circonstances industrielles étudiées. La cancérogénicité peut être dépendante de caractéristiques inhérentes à la phase cristalline ou de facteurs extérieurs affectant son activité biologique ou de la distribution de ses polymorphes".

(IARC monographie Vol. 68, 1997). Le NTP liste les polymorphes de la silice cristalline (de dimension alvéolaire) parmi les substances "reconnues cancérigènes chez l'homme".

L'IARC et le NTP n'ont pas évalué les FCR après-service qui peuvent contenir différentes phases cristallines. Toutefois, une analyse d'échantillons de FCR après-service prélevés dans le cadre d'un programme de mesures en accord avec l'EPA a trouvé que dans les fours prélevés la plupart des échantillons ne contenaient pas de niveaux détectables de silice cristalline. D'autres études sur les FCR montraient que des fibres après-service chauffées artificiellement ne montaient que très peu ou pas d'activité lorsque l'exposition était effectuée par inhalation ou par injection intratrachéale et que les FCR après-service n'étaient pas cytotoxiques pour des cellules du type macrophage à des concentrations allant jusqu'à 320µg/cm2 par comparaison au quartz ou à la cristobalite purs dont l'activité significative était détectée à des concentrations beaucoup plus basses de 20 µg/cm2 environ.

L'IARC et le NTP n'ont pas évalué les FCR après-service qui peuvent contenir différentes phases cristallines. Toutefois, une analyse d'échantillons de FCR après-service prélevés dans le cadre d'un programme de mesures en accord avec l'EPA a trouvé que dans les fours prélevés la plupart des échantillons ne contenaient pas de niveaux détectables de silice cristalline. D'autres études sur les FCR montraient que des fibres après-service chauffées artificiellement ne montaient que très peu ou pas d'activité lorsque l'exposition était effectuée par inhalation ou par injection intratrachéale et que les FCR après-service n'étaient pas cytotoxiques pour des cellules du type macrophage à des concentrations allant jusqu'à 320µg/cm2 par comparaison au quartz ou à la cristobalite purs dont l'activité significative était détectée à des concentrations beaucoup plus basses de 20 µg/cm2 environ.

Évaluation de danger SIMD

HMIS Santé 1* (* indique le potentiel pour les effets chroniques)
HMIS Substance inflammable 0
HMIS Réactivité 0
HMIS Équipement de protection individuelle X (à déterminer par l'utilisateur)

AVIS DE NON-RESPONSABILITÉ – Les informations fournies dans cette fiche et la sécurité des données sont basées sur les données fournis par nos fournisseurs actuels. Bien que les informations et les recommandations du présent document sont considérées comme exactes, Industries 3R ne prend aucune garantie à cet égard et décline toute responsabilité en se fondant sur celle-ci. Nous vous recommandons de tester en fonction des conditions locales. Les spécifications sont sujettes à modification sans préavis.

Date de mise à jour : 2025-06-06